If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(F)=6F^2-18F+12
We move all terms to the left:
(F)-(6F^2-18F+12)=0
We get rid of parentheses
-6F^2+F+18F-12=0
We add all the numbers together, and all the variables
-6F^2+19F-12=0
a = -6; b = 19; c = -12;
Δ = b2-4ac
Δ = 192-4·(-6)·(-12)
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{73}}{2*-6}=\frac{-19-\sqrt{73}}{-12} $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{73}}{2*-6}=\frac{-19+\sqrt{73}}{-12} $
| 8y-15y-30y-51y=53y+31y-172 | | 2(v-8)-8=-7(-3v+4)-5v | | -6z-4z=-16 | | 4x-7=x^2-2x+2 | | 3/7(4x-7)=2x-5 | | 6/16=m/8 | | 5y+6y-81=7y102+65y | | 3(5n-6)=2(4n+5) | | Y=10.5x+4.25 | | -4k+3=3k+17 | | 5m+6m-3m=30-2m+8m+18 | | 10x–24=8x+64 | | 8t-4+3t=7t+t+14 | | X2+y2=52 | | 21-6u=27-8u | | r−11=7 | | m4= 3.5 | | 4u-16=-5(u-5) | | 4u-16=-5(u-9) | | 7+6x+10=9x-26 | | (6•z)+4=40 | | (14-5i)^2=171-140i | | 15=-5(-4+r) | | 4b-30=10 | | -3v+v+5=-3v+5 | | 10x-2x+72-12x=180 | | -3=-4n-6+4n+3 | | -x+4+3x=-8+2x+4 | | 2m-5+3=-6m+2+8m | | 2x+5×+6-1=19 | | C^2+14x=-7 | | 2x+6×+6-1=10 |